IXF-PZG-1064-125 ## Polarizing Fiber Exail Polarizing (PZ) fiber is designed so that only one state of polarization is guided along the fiber; any other state of polarization will be lost rapidly thus yielding a high built-in polarization extinction ratio. This particular mechanism is obtained through a specific waveguide design and a careful optimization of the glass composition resulting in both high birefringence and leakage behavior. PZ fibers are available at different wavelengths with a broad polarizing window (typically larger than 100 nm), low attenuation and high extinction ratio (\geq 30 dB), that can be tuned by coiling the proper fiber length at the appropriate coil diameter. If needed Exail also offers ready to use polarizing solutions based on PZ fibers. #### **Benefits & Features** - · All-fiber polarizer - · Coiled operation - Polarizing wavelengths availabe: 780, 840, 980, 1060, 1310 or 1550 nm - Fiber diameter: 80 or 125 μm - · Tiger design - > 100 nm polarizing window - · > 30 dB extinction ratio #### **Applications** - Quantum optics, cold atoms - · All-Fiber polarizer - Fiber optic current sensors and gyros #### **Parameters** | 20 dB fast edge* (nm) | < 1015 | | |----------------------------------|--------------|--| | 3 dB slow edge* (nm) | > 1105 | | | Extinction ratio (dB) | < -30 | | | Attenuation @1053nm (dB/km) | < 20 | | | Mode field diameter @1053nm (µm) | 8 ± 2 | | | Numerical aperture | 0. 11 ± 0.01 | | | Core/Clad concentricity (µm) | <1 | | | Cladding diameter (µm) | 125 ± 2 | | | Coating diameter (µm) | 255 ± 10 | | | Proof test level (kpsi) | 100 | | ### **Design parameters** | Operating wavelength (nm) | 1064 | |----------------------------------|---------------| | Design | Tiger | | Core shape | Round | | Coating material | Dual acrylate | | Operating temperature range (°C) | -40 to +85 | #### Comments: ^{*}Typical polarization performance with a length of 5 meters