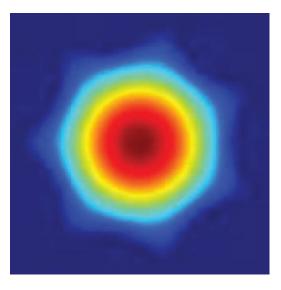
SPECIALTY OPTICAL FIBER IXF-ARF Series Anti-Resonant Hollow Core Fibers

Optical signal in hollow core anti-resonant fibers propagates in an air core surrounded by single ring of anti-resonant tube elements. Guidance is based on an anti-resonance from the thin glass membranes constituted by the non-touching tubes surrounding the hollow core. The extremely low overlap of guided power with the surrounding silica, less than 2x10⁻⁵, added to the mode effective area, confers to these fibers design record material non-linearity.

Partnership with

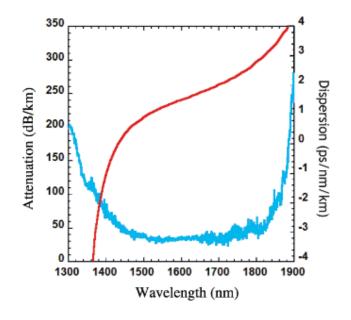


Benefits & Features

- High damage threshold
- Nearly single mode guidance
- Ultra low dispersion in the transmission bands

Applications

- Low latency data transmission
- Gas-filled AR hollow core fibre laser
- Molecular tracing, gas detection
- High power delivery for pico- and sub-picoseconds
 optical pulses



IXF-ARF Series TECHNICAL SPECIFICATIONS

Parameters

P/N: IXF-ARF-	40-240	33-160-V1	45-240-V1	40-230	120-400
Optimized for (nm)	750	1064	1550	2000	3000
Material	air core				
Core diameter (µm)	38 ± 2	33 ± 2	46 ± 2	40 ± 2	119 ± 2
Cladding diameter (µm)	71 ± 3	66 ± 3 μm	99 ± 3	105± 3	233 ± 3
Fiber diameter (µm)	242 ± 5	160 ± 5	239 ± 5	230 ± 5	404 ± 5
Coating outside diameter (µm)	398 ± 10	325 ± 10	395 ± 10	340 ± 10	492 ± 10
Coating type	dual coat high index acrylate				
Attenuation* (dB/km)	< 50	< 50	< 35	< 80	< 70
Transmission bandwidth (nm) (< 100 dB/km)	700 – 915	1000 - 1260	1450 - 1750	1600 - 2200	2900 - 3150
Mode field diameter* (µm)	29	26	37	33.5	90
Dispersion* (ps/nm/km), typical	0.8	2	1	2	0.8
Mode overlap with core (%)	> 99.99				
Numerical aperture	0.02	0.03	0.03	0.03	0.03
HOM suppression (dB)	N/A	10 (after 3 m)	10 (after 5 m)	> 25 (after 5 m)	N/A
3 dB Bend loss radius* (cm)	4 ± 1	4 ± 1	6 ± 1	8 ± 1	11 ± 1

* at specified optimised wavelength

Typical measured attenuation and dispersion of IXF-ARF-45-240

Exail reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein.

contact.photonics@exail.com | www.exail.com Europe +33 1 30 08 94 50 | Americas +1 508 745 3487 | APAC +60 11 1623 1698