

ModBox-VNA-OBand series O-Band, 40 GHz, 70 GHz Modulation Unit

ModBox

The ModBox-VNA-OBand is a O-Band and wide bandwidth Optical Transmitter designed to extend Vectorial Network Analyzers applications into the optical domain.

When associated with a Vectorial Network Analyzer, they make up a high performance and easy to use test equipment for the characterization of photoreceivers or any high speed optoelectronic device.

The ModBox-VNA-OBand incorporates a 1310 nm low low RIN laser source and a modulation stage based on a wide bandwidth LiNbO₃ modulator with an automatic bias control circuit.

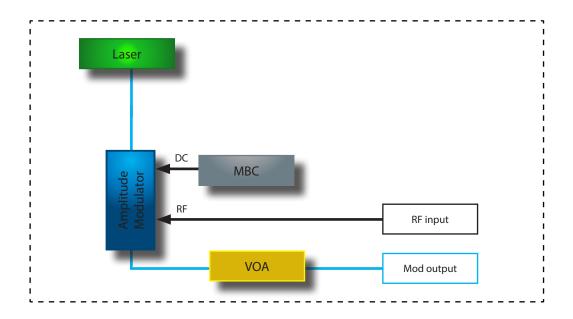
FEATURES

- · Analog modulation up to 40GHz, 70GHz
- · Dither-free bias controller
- Low RIN
- · High harmonics suppression

APPLICATIONS

- · Transmission system test
- · Components characterization
- Receiver frequency test
- R&D laboratories

OPTIONS


- 850 nm, 1310 nm & 1550 nm, C-band
- Multi-Channel

Performance Highlights

Parameter	Min	Max			
Operating wavelength	-	1310 nm	-		
Modulation format	Analog Modulations				
Modulation bandwidth	-	-	40 GHz, 70 GHz		
Modulated optical output power	5 dBm	-	-		

ModBox

Functional Block Diagram

The ModBox-VNA-OBand features:

- A chirp-free X-cut LiNb0₃ (Lithium Niobate) Mach-Zehnder Analog Intensity modulator. It is selected for its high electro-optic bandwidth and flat, low ripple, electrooptic response curve.
- A modulator bias controller. The internal LiNbO₃ modulator is a X-cut device with very low drift. However an automatic bias control circuit is provided to lock the operating point of the modulator at the quadrature point whatever the environmental conditions. The bias control circuit is dither free and therefore does not add any spurious content to the small signal modulation generated by the VNA. It is pre-set for operation in quadrature, in the linear portion of the modulator transfer curve.
- An 1310 nm low RIN laser directly spliced to the modulator. Wavelength and power of such embedded laser are tunable through the front panel controls or the ModBox software interface.
 - A Variable Optical Attenuator (VOA) to precisly control the modulated optical output signal.

The ModBox-VNA-OBand is controlled from the front panel thanks to the Smart interface touch screen. The Smart manual interface allows for bias control circuit and laser settings. It comes also with a simple GUI solution, Windows based and implemented through the Ethernet interface.

ModBox-VNA-OBand series O-Band, 40 GHz, 70 GHz Modulation Unit

ModBox

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input electrical termination	-	AC coupled	Single ended			-
Signal type	-	-		Analog		-
Input voltage (1)	V _{IN}	Amplitude Modulation	0.4	0.6	1	Vpp
Bandwidth BW	DW	ModBox-VNA-OBand-40GHz	-	-	40	GHz
	BVV	ModBox-VNA-OBand-70GHz	-	-	70	GHz
Impedance matching	Z _{IN-RF}	-	-	50	-	Ω

^{(1):} The ModBox-VNA-OBand does NOT feature an internal RF amplifier. The VNA characterization is usually performed in a "small signal mode", therefore a RF amplifier is not necessary. Omitting the amplifier allows to obtain a smoother and flatter transfer function.

Output Specifications

		C 100		_		
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Modulation bandwith		ModBox-VNA-OBand-40GHz	-	-	40	GHz
	-	ModBox-VNA-OBand-70GHz	-	-	70	GHz
Wavelength	λ	From embedded laser diode		1310 nm		-
Wavelength laser tuning range	-	From embedded laser diode	-	0.8	1	nm
Maximum modulated output power	OP _{OUT}	1310 nm	2	-	-	dBm
Maximum modulated output power	НОР	ModBox-VNA-OBand-40GHz	5	6	-	dBm
Optical output power range adjustment	ΔΟΡ _{ουτ}	By the use of the VOA	-40	-	0	dB
Optical output power range stability	δOP_{OUT}	Over 12 hours	-	-	1	%rms
Spectrum linewidth	Δλ	1310 nm	-	3	15	MHz
Relative Intensity Noise	RIN	-	-	-	-160	dB/Hz
Optical return loss	ORL	-	-45	-50	-	dB
Electrical return loss	ERL	-	-	-12	-10	dB

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
RF input power	EP _{in}	-	28	dBm

ModBox-VNA-OBand series O-Band, 40 GHz, 70 GHz Modulation Unit

ModBox

Interfaces, Dimensions and Compliance

Interfaces				
Optical connectors and fibers	(FC-SC)/(APC-UPC) - Polarization maintaining fiber Corning PM13-U25D			
Electrical connector	ModBox-VNA-OBand-40GHz	V female (1.85 mm)		
	ModBox-VNA-OBand-70GHz	V female (1.85 mm)		
Control	Embedded Interface (front panel touchscreen) + Remote control (Ethernet)			
Power supply	100-120V/220-240 automatic switch 50-60Hz (Rear panel)			
EMC / Optical norms	EN61326-1 Ed. 2006 / EN 60625-1			
Dimensions / Weight	Rack 19" x 2U, Depth=495mm / 5 kg			

Ordering information

ModBox-VNA-OBand-XXGHz-YY

VNA = Optical Vectorial Network Analyser extension

OBand = Embeds laser, 1310 nm by default

XX = Analog Modulation bandwith: 40GHz up to 40 GHz - 70 GHz up to 70 GHz

YY = Output connectors, FA: FC/APC - FC: FC/UPC - SC: SC/UPC - SA: SC/APC

About us

iXblue Photonics produces specialty optical fibers and Bragg gratings based fiber optics components and provides optical modulation solutions based on the company lithium niobate (LiNbO₃) modulators and RF electronic modules. iXblue Photonics serves a wide range of industries: sensing and instruments, defense, telecommunications, space and fiber lasers as well as research laboratories all over the world.

3, rue Sophie Germain 25 000 Besançon - FRANCE Tel.: +33 1 30 08 87 43 Ixblue reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein. All statements, specification, technical information related to the products herein are given in good faith and based upon information believed to be reliable and accurate at the moment of printing. However the accuracy and completeness thereof is not guaranteed. No liability is assumed for any inaccuracies and as a result of use of the products. The user must validate all parameters for each application before use and he assumes all risks in connection with the use of the products