iXblue Photonics

iXblue Polarization SCrambler
PSC-LN
Introduction

The Lithium Niobate Integrated Optical Polarization Scrambler (PSC-LN) modulator is based on:

- A modified phase modulator on X-cut (low speed) or Z-cut (high speed) LiNbO$_3$.
- An optical waveguide made by titanium in-diffusion and supporting both TE- and TM-polarization states.
- An optical waveguide with a low Polarization Dependent Loss (PDL).
- An input polarization maintaining (PM) fiber whose slow axis is set at 45° from the TE and TM axis of the LiNbO$_3$ crystal.
- An output standard single mode fiber.
- Lumped electrodes for low frequency applications (up to 200 MHz).
- Travelling wave electrodes for high frequency applications (up to 30 GHz).
Principle

- The PSC-LN are based on a birefringent LiNbO$_3$ phase modulator whose waveguide is illuminated at 45° of its main axis. The input state of polarization (SOP) is thus equally split up in two orthogonal TE and TM polarization states.

- Due to the birefringence properties of the LiNbO3 crystal (extraordinary and ordinary main axes) and the configuration of the modulator, the TE-polarized wave propagates at a different speed compared to the TM-polarized wave.

- When a voltage is applied via the control electrodes, an additional optical path difference between the TE and TM components is produced by the electro-optical effect, resulting in a new adjustable SOP for the output light (linear, circular or elliptic).
Principle:

- **Phase shift on the extraordinary fast axis:**
 \[
 \phi_e = \frac{2\pi}{\lambda} \left[n_e L + \frac{1}{2} n_e^3 r_{33} \eta \frac{V_0}{g} \right]
 \]

- **Phase shift on the ordinary slow axis:**
 \[
 \phi_o = \frac{2\pi}{\lambda} \left[n_o L + \frac{1}{2} n_o^3 r_{13} \eta \frac{V_0}{g} \right]
 \]

- **Differential phase shift:**
 \[
 \Delta\phi = \frac{2\pi}{\lambda} \left[(n_e - n_o) L + \frac{1}{2} (n_e^3 r_{33} - n_o^3 r_{13}) \eta \frac{V_0}{g} \right]
 \]

- **Half-wave voltage** V_π : voltage applied for a π radians phase shift between the fast and slow axes.
 \[
 V_\pi = \frac{\lambda g}{(n_e^3 r_{33} - n_o^3 r_{13}) \eta}
 \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Glossary</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_e</td>
<td>Extraordinary refractive index</td>
</tr>
<tr>
<td>n_o</td>
<td>Ordinary refractive index</td>
</tr>
<tr>
<td>r_{13}, r_{33}</td>
<td>LiNbO$_3$ Electro-optic coefficients</td>
</tr>
<tr>
<td>L</td>
<td>Crystal length</td>
</tr>
<tr>
<td>l</td>
<td>Electrode length</td>
</tr>
<tr>
<td>g</td>
<td>Electrodes gap</td>
</tr>
<tr>
<td>λ</td>
<td>Optical Wavelength</td>
</tr>
<tr>
<td>V_0</td>
<td>Applied Voltage</td>
</tr>
<tr>
<td>η</td>
<td>Electro-optic overlap</td>
</tr>
</tbody>
</table>
Polarization on the Poincaré Sphere vs applied voltage

- When a variable voltage is applied on the electrodes, the output SOP follow a circle (red curve) whose trajectory crosses the states of right and left circular polarization and the two states of linear polarizations at +/- 45°.

- Exemple of an experimental Poincaré sphere trace of the output SOP for a continuous voltage of 10 Vpp applied to the modulator.
 PL denotes the linear polarisation states.
Degree Of Polarization (DOP)

- On Lithium niobate modulators, the polarization scrambling method is based on applying a periodically voltage at a speed equal or higher than the bit rate.
- The degree of polarization (DOP) describes the portion of polarized light during the detection time frame.
- For the specific case of a periodically sinusoidal voltage applied on the electrodes:
 \[V(t) = V_0 \sin(\Omega t) \]
 \[\text{DOP} = |J_0(\gamma)| \]
 with \[\gamma = \pi \frac{V_0 M(\Omega)}{V_\pi} \]
 \[M(\Omega) \], the electro-optic response of the modulator
- The DOP tends to zero at specific modulation indexes.
- For the first root: \[V_0 = 0.7655 \, V_\pi M(\Omega) \]
Configuration: Low frequency Polarisation Scrambler PSC-LN-0.1

- X-cut: better stability against environmental perturbations (temperature variations).
- Lumped electrodes: well adapted to the low frequency range (kHz, MHz).

Simulated degree of polarization vs applied voltage

![Diagram of X-cut LiNbO3 with labeled parts: Lumped electrodes, X(n_e), Z(n_e)]
Configuration: High frequency Polarisation Scrambler

PSC-LN-10

- Z-cut: high efficiency (low driving voltage).
- Travelling wave electrodes: very wide bandwidth (up to 30 GHz).
- Low electrical reflections (S_{11}) thanks to travelling wave electrodes matched close to 50 Ω.

Simulated degree of polarization vs electrical power
LiNbO$_3$ Integrated Optical Polarization Scrambler PSC-LN modulator features:

- Adjustable scrambling speed over a very wide range of frequencies.
- Compactness.
- Low electrical power consumption.
- Wide operating wavelength range.