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Abstract—Combined effect of radiation and temperature on
the response of polyimide coated radiation hardenesingle-mode
fibers is investigated in the context of distributd monitoring of
large nuclear infrastructures. Radiation induced atenuation
(RIA) is evaluated for doses ranging from 1 to 10 I@y(SiO2) and
temperatures up to [R50 °C. Measurements of fiber tensile
strength are performed to better estimate conditios of safe
operation before and after exposure to the severeneironment.
Finally, preliminary results obtained for a new opical fiber
designed from an alternative preform fabrication process,
Surface Plasma Chemical Vapor Deposition are presed. This
fiber exhibits 1310 nm RIA below 7 dB/km after a IMGy(SiO2)
dose paving the way toward optical fibers suited toextreme
radiation environments.

Index Terms—Radiation hardened fiber, polyimide coating,
distributed sensing, radiation induced attenuation,mechanical
strength, Surface Plasma Chemical Vapor Deposition.

|I. INTRODUCTION

Operation of photonics technologies under varicagiation
environments is already well spread due to theiimsic add-
values, such as low footprint, low power consumptand
extended bandwidth. However, each field of applicat
comprises specificities that need to be addresseatder to
ensure long term reliability of the device. In thisntext,
effects of radiations combined with low or high fesmatures
are encountered in many applications that involytical

fibers. For example, rare earth-doped fiber optarablifiers

and fiber optic gyroscopes are already implemefaedpace
applications [1]. Spun optical fiber based currsstsors [2],
temperature and/or strain monitoring systems basediber

Bragg gratings at cryogenic [3] and high tempemfdt or on
back-scattered light in optical fibers [3,5] shb# installed
inside large nuclear infrastructures. In this caftd&kaman-
distributed temperature sensors (RDTS) in multiméiders

are seen for more than two decades as a good corniggro

between spatial resolution, precision and operatiogts [6].
However, recent studies on single-ended
configurations have shown that Radiation Induce@miation
(RIA) variations with wavelength generate a temhem
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measurement error that strongly increases with tabea
dose [7]. Newly developed RDTS systems [8] shalbval
distributed temperature measurements up to a few(8iG.)
dose levels using single-mode fibers in a singldeen
configuration. Advanced interrogators are also albe
discriminate between temperature and strain ughéosame
level of dose [9]. Specific radiation hardened krAgode
fibers have been developed to match the requireradrihose
applications [10]. Such fibers are investigatedthis study
both in term of RIA, that impacts the maximum sagsi
length, and fiber mechanical strength degradathmat,impacts
the sensing system reliability over the years. irdlje coated
fibers have been irradiated lyyrays at 1 MGy(Si@ up to
[R50 °C and up to 10 MGy(Sip at 1100 °C. Finally, a
specific preform deposition technigue named Surflesma
Chemical Vapor Deposition (SPCVD) has demonstrated
promising features to fabricate a new generationadfation
hardened fibers well suited to extreme radiatiovirenments.

II. RIA AND MECHANICAL STRENGTH EVOLUTION DUE TO
COMBINED IRRADIATION AND TEMPERATURE

Investigated single-mode optical fibers belongXobliie rad-
hard portfolio [11]. Those radiation hardened agdtitibers
comprise a fluorine-doped silica claddingt% of fluorine)
and a pure silica core [10]. Preforms are fabritdte MCVD
(Modified Chemical Vapor Deposition) and drawn with
polyimide coating in order to operate up to higmperature,
300 °C on long term in radiation-free environmeritable |
summarizes the main characteristics of the testeples.

TABLE |
OPTICAL CHARACTERISTICSOF TESTEDOPTICAL FIBERS
paramete specificatior
core numerical apert. 0.14 +0.0.
attenuation@1.55p < 0.6 dB/kn
cut-off wavelengtl < 1450 nir
mode field diameter@1.55} 9.C+ 1unm
silica cladding diameter 125+ 2 un
coatingdiameer 155+ 5 un

interrogato

Four samples of 50 m in length have been irradibyetiCo y-
rays at the IRSN IRMA®Co facility, Saclay (France).
Cumulated dose reaches 1 MGy(®idor a dose rate of
0.77 Gy/s, at room temperature and up to 240 °Qigusi
different thermo-regulated plates. RIA is measunedine
using a specific RDTS interrogator from VIAVI Sdhs
which operates at two wavelengths (1550 nm and 168p
with an injected power of a few hundred of millitgatIts
architecture makes the temperature measuremerpendent



from differential attenuation between the Stokes #@mti-

Stokes signals [8]. Figure 1 presents temperatoreasured
by PT-100 probes (Platinum resistance Thermomepgaspd
close to the four irradiated fiber coils. Averagitigpse data
leads to mean temperatures respectively of 32 €CIC5
92 °C and 240 °C, with variations of + 2 °C. In theee
following figures, bold and dashed vertical linespresent
shutdowns of irradiation and heating plates.

300 ;
250 i
~~
S :
e 200 ¢
[
)
5 : *240°C
2 15 : :
s 4 . 92°C
£ 100 : e 39°C
£ 32°C
]
B s
’ !
o | [ |
0 100 200 300 400
Time (hours)
Fig. 1. Temperature monitoring during irradiatiordafter shutdown

for the four samples

The RIA growth kinetics measured in-line at 1550 and
1625 nm during irradiation up to 1 MGy(SiCas well as the
RIA evolution post-irradiation are presented irufigs 2 and 3
at the different temperatures of irradiation. Filserength is
measured before/after irradiation according to 89Z93-1-31
norm using an uniaxial table top tensile testemfrBIBER
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Fig. 3. RIA versus time at 1625 nm at different pematures
up to 1 MGy(SiQ)
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Fig. 4. Tensile strength versus failure probability
before/after irradiation at 1 MGy (S¥D

SIGMA for a set of 15 fiber samples of 0.5 m. FlgW# A second set of fibers has been irradiated at 0 %C up to

provides obtained results for a strain rate of 36/min which

10 MGy(SiQ) at [21 Gy/s off%Co y-rays, corresponding to a

corresponds to an elongation rate of & %/min. Railu s qose delivered iAL32 hours. Irradiation was performed

probability of sample (i) is calculated by (i — P515. Red
lines represent minimal strength requirements aedtin IEC
60793-2-50 norm for generic optical fibers.
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Fig. 2. RIA versus time at 1550 nm at different pematures
up to 1 MGy(SiQ)

in an industrial facility, at Beta-Gamma-Service,iefW
(Germany), where RIA was not monitored in-line.
Extrapolation of experienced RIA up to 10 MGy(gi@rom
previous experiment data is provided in figure btfee worst-
case condition (1625 nm and 32 °C) and a doseofae77
Gyl/s. Fiber strength evolution before/after irrdidia is
presented on figure 6.
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Fig. 5. Measured RIA at 1625 nm at 32 °C up to 1y{&i0)
and extrapolation up to 10 MGy(Sidn dashed line
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1 For a total dose of 1 MGy(Si) RIA is maximal,[50dB/km
09 | ®10MGy-90+10°C at room temperature and 1625 nm. This value isca giasis
for an optical budget calculation, as a worst-casedition,
even though the system can operate at higher textoyper For
a total dose of 10 MGy(Sip maximal RIA reaches at least
150 dB/km at 1625 nm, from the estimation preserdad
figure 5. Considering an optical budget [Gf0 dB, which is
typical of the used interrogator, estimated senkingth drops
from (200 m down to below 70 m for both cumulated dose
levels. Therefore, RIA experienced by the testeoerf
directly limits the sensing length in extreme réd&a
environments. Another important issue is fiber naedtal
0 1 2 3 4 5 6 7 reliability. Polyimide coating weakening after idiation at
Tensile Strength (GPa) the MGy dose level has been demonstrated by thermal
Fig. 6. Tensile strength versus failure probability gravimetric analysis and safe operating temperatige
before/after irradiation at 10 MGy(SiDand 90 + 10 °C expected to drop dib0 °C [10]. Results presented on figure 4
indicate that combined effect of temperature andiateon
I1l. DiscussiON ONMCVD FIBER PERFORMANCES leads to reduce median value and increase dispedsithe
Rising the temperature during irradiation can hayeositive, tensile strength measured at room temperatures Warth
a negative or no impact on RIA according to theerfib Noticing that minimal strength requirements of geneptical
composition, the irradiation conditions and the naig fibers (red lines in figure 4) are reaphed for mperature of
wavelength [12]. In the case of polyimide coatedepsilica 240 °C, whereas long-term operating temperature nfon-
core multimode fibers, a strong RIA reduction isetved at irradiated polyimide coated fibers is aB00 °C. So, both
854 nm (factor(18) and 1047 nm (factof#.6), when approaches lead to the conclusion that operatimgpéeature
temperature increases from to 20 °C to 300 °C f&Ca y- pf p(_)lyjmide is limited to[R50 °C in Fhel case“of combined
rays cumulated dose of 26 kGy [6]. Figure 7 pres@&ia at imadiation at the MGy dose level. As indicatedigure 6, for
1.55 um extracted from data of figure 2 at differdnses for @ 10 times higher dose delivered [@00 °C, no strength
the tested pure silica core single-mode fiber. Tenmpre degradation is experienced, with most likely aHartmargin
impact is dose dependent, but most likely time delpat, ©n temperature before reaching minimal strengthirements
considering the kinetic of defects annealing by gerature. Of generic optical fibers.
Below B0 kGy, RIA is weakly affected, but above this vealu
and up to60 °C, it increases strongly with the level of dose!V: SURFACEPLASMA CHEMICAL VAPORDEPOSITION FIBER
whereas above 92 °C, there is only a minor impact dnitially designed to produce conventional germamidoped
temperature on RIA. A detailed study of defectsattom and single-mode fibers, the SPCVD process has beert firs
annealing in this particular type of fiber remaivecessary as described in 1986 [14]. It is based on a low-pressu
the current state-of-the-art about the Si-relatethtpdefects (~1 mbar) microwave (2.45 GHz) plasma created withi
[13] does not yet allow a clear understanding ef tcomplex silica substrate tube, itself placed into a tubidlamnace at
interactions between temperature, wavelength amdlition temperatures over 1000 °C, which enables the dasme of
parameters. gaseous precursors. The dissociation of a mixtii&@, and
O in the plasma column is followed by a recombirmatid Si
and O atoms in the volume of the column. Then, $i@
molecules diffuse to the inner surface of the sabstwhere
they are adsorbed, and the oxidation into glastigasis
obtained using the excess oxygen available in ¢he&rmmn.Due
to an energetically-favorable recombination of 8d &, the
SiCls precursor is quickly consumed and the depositibn o
silica occurs only on the first centimeters of tw@umn. By
modulating the microwave power to apply a variatadrthe
column length, one can shift forward and backwane t
0 deposition area of silica to get a long deposit,denaf
thousands of nanoscale layers. The preforms awangot by
0 collapsing the SPCVD-made deposits using a glalse lander
20 60 100 140 180 220 260 an oxidant atmosphere. This process is suiteddiockte both
passive and active fibers [15,16]. We describehia section
results obtained from a preliminary fluorine-dopsihgle-
mode fiber made from a SPCVD preform and drawn \ith
standard dual acrylate coating. Obtained opticaperties are
indicated in table Il. This fiber contains respeely [0.6wt%
and[R.2wt% of fluorine in the core and in the cladding.
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